

SCIENTIFIC INVESTIGATIONS

Sleep, chronotype, social jetlag, and mental health in resident physicians: a cross-sectional study

Christophe Moderie, MD, MSc^{1,2}; Camille Paradis, MD¹; Frederick L. Philippe, PhD³; Marie-Claude Geoffroy, PhD^{1,4}; Emilie Guay, MD¹; Vincent Paquin, MD^{1,4}

¹Department of Psychiatry, McGill University, Montreal, Canada; ²Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Canada; ³Department of Psychology, University of Quebec in Montreal, Montreal, Canada; ⁴McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Quebec, Canada

Study Objectives: Social jetlag, the difference between imposed and endogenous sleep schedules, may be detrimental to resident physicians' health. The current profiles of sleep habits, particularly the differences between workdays and free days, are unknown in that population. This cross-sectional study of Quebec resident physicians aimed at assessing sleep habits on workdays and free days and predictors of social jetlag.

Methods: Residents were recruited via their residency programs and social media to complete an online questionnaire. Measures included means of sleep duration and timing, chronotype, sleep debt, sleep disturbances, and social jetlag. A range of sociodemographic variables, lifestyle characteristics, and mental health indicators were examined as predictors of severe social jet lag using logistic regressions.

Results: A total of 492 residents were included in the study (mean [standard deviation] age, 27.6 [3.6] years; 330 females [67.1%]). The mean sleep duration was 7.15 hours (95% confidence interval [CI], 7.02–7.28 hours) on workdays and 8.36 hours (95% CI, 8.18–8.54 hours) on free days. The mean sleep debt was 1.59 hours (95% CI, 1.37–1.81 hours), and mean social jetlag was 1.37 hours (95% CI, 1.28–1.47 hours), with 31.9% (95% CI, 25.0–39.6%) of residents experiencing ≥2 hours of sleep debt and 21.8% (95% CI, 16.5–28.3%) experiencing severe social jetlag. The prevalence of sleep disturbances was 51.7% (95% CI, 44.4–58.8%). Severe social jetlag was associated with earlier stage of training, later chronotype, decreased physical activity, increased sleep debt, and depressive symptoms.

Conclusions: Many residents experience severe social jetlag, chronic sleep deprivation, and sleep disturbances. Importantly, severe social jetlag was associated with depressive symptoms, suggesting a potential intervention target for promoting residents' mental health.

Keywords: sleep, circadian rhythms, residency, medical doctors

Citation: Moderie C, Paradis C, Philippe FL, Geoffroy M-C, Guay E, Paquin V. Sleep, chronotype, social jetlag, and mental health in resident physicians: a cross-sectional study. *J Clin Sleep Med*. 2024;20(12):1915–1922.

BRIEF SUMMARY

Current Knowledge/Study Rationale: Prior studies note short sleep durations among resident physicians on workdays, yet comprehensive investigations into sleep–wake patterns across their work and free days are lacking. This study aimed to address this gap by examining sleep habits' timing and regularity in residents.

Study Impact: The study unveils a high prevalence of severe social jetlag, chronic sleep deficit, and sleep disturbances among residents. Notably, the association between severe social jetlag and depressive symptoms underscores the potential for interventions to enhance residents' mental health. With a link found between severe social jetlag and a late chronotype, this highlights the relevance of considering chronotherapies to alleviate social jetlag among this population.

INTRODUCTION

Medical residency has traditionally involved heavy schedules to the detriment of sleep, but paradigms are shifting; evidence has linked poor sleep in resident physicians to poorer functioning, including increased risk of medical errors^{1–3} and motor vehicle collisions.^{3–5} Sleep is regulated by the interaction of homeostatic and circadian processes⁶ and influenced by societal obligations, as reflected by the variation of sleep habits across workdays and free days.⁷ The disruption in sleep patterns caused by differing sleep times on workdays and free days is termed social jetlag, akin to traveling across multiple time zones westward on Fridays and returning on Mondays.⁸ A misaligned circadian system

causes various symptoms, including problems with sleep and digestion.⁸ Whereas travel-induced jetlag symptoms are transient, social jetlag and its symptoms persist throughout a working career.⁹

Previous studies with resident physicians found a short sleep duration on workdays and sleep compensation on postcall days.^{5,10} Yet, we are not aware of any studies that explicitly investigated the sleep–wake timing and regularity of sleep habits across workdays and free days in residents. The primary aim of this study was to examine sleep duration and sleep–wake timing on workdays and free days among resident physicians and to document social jetlag, sleep debt, and sleep disturbances. Importantly, social jetlag is associated with negative long-term outcomes such as depressive symptoms in the general population.^{11–13}

The evening chronotype (eg, late circadian clock) typically found in young adults¹⁴ may make residents particularly susceptible to social jetlag. Some evidence also suggests lifestyle factors, such as screen use and physical activities, may modulate social jetlag.^{15,16} We therefore also examined the association of sociodemographic, mental health, and lifestyle factors with social jetlag.

METHODS

Study design

This study follows the Checklist for Reporting Results of Internet E-Surveys.¹⁷ Participants eligible for this cross-sectional study were resident physicians actively affiliated with any residency program in Quebec, Canada. There were no exclusion criteria. Residents were recruited by email via their residency programs and on social media. Recruitment and data collection via open survey were conducted between September and November 2022. Questionnaires were administered online through a custom survey platform (<https://www.elaborer.org>). View rates were not collected. Electronic informed consent was obtained prior to completing the online questionnaire (either in French or English). Cookies and Internet protocol checks were not used given that multiple residents might complete the survey from the same hospital computers. A random draw for 50 gift cards of 75 Canadian dollars was offered, requiring participants to provide a unique email address. The study received ethical approval from the institutional review board of the University of Quebec in Montreal (#4552_e_2021).

Measures

Sociodemographic information

Participants reported their sex, age, racialized group, residency year of training, and program. Racialized minority group (vs White) was defined as self-identifying as Arab, Asian, Indigenous, Hispanic, Black or African, or others. Age was stratified as < 27, 27 to < 29, and ≥ 29 years old. Levels of training (postgraduate year, PGY) were grouped into PGY1, PGY2–3, and PGY4–5.

Sleep habits

Seven core items of the Munich ChronoType Questionnaire were used to investigate sleep–wake timing on workdays and free days.¹⁸ Midsleep on free days (sleep corrected) was used as a proxy for chronotype and treated as a continuous variable. Reported sleep–wake timing was used to determine sleep duration on workdays and free days. Sleep debt was calculated as the difference between sleep duration on free days and the mean weekly sleep duration. Social jetlag was calculated as the absolute difference between midsleep time on workdays and midsleep time on free days.^{9,19} Social jetlag and sleep debt were further dichotomized as mild (< 2 hours) or severe (≥ 2 hours) in concordance with previous studies.^{7–9,19,20} We also asked participants the number of nights of sleep significantly affected by clinical duties in the past month (1 item, range 0–30 nights/mo). Sleep disturbances were derived from the third item

of the Patient Health Questionnaire (“Trouble falling or staying asleep, or sleeping too much”).

Mental health and lifestyle

The Patient Health Questionnaire assessed depressive symptoms in the 2 past weeks (range 0–27; $\alpha = 0.84$).²¹ A score > 4 defined the presence of at least mild depressive symptoms.²¹ The third item (sleep disturbances) was removed for sensitivity analyses. The 7-item General Anxiety Disorder assessed anxiety symptoms in the past 2 weeks (range 0–21; $\alpha = 0.89$), and a score > 4 defined the presence of at least mild anxious symptoms.²²

Alcohol use in the past 2 weeks was reported on a 5-point scale (“never,” “1–2 times,” “3–5 times,” “6–10 times,” and “everyday”) and was recoded dichotomously as 0 = “1–2 times” or less and 1 = “3–5 times” or more.²³ Cannabis use in the past 2 weeks was reported on a 4-point scale (“never,” “1–2 times per week,” “3 or more time per week,” and “everyday”) and was recoded dichotomously as 0 = “never” and 1 = “1–2 times per week” or more.²³

Daily digital media use in the past 3 months was measured for (1) TV or streaming platforms, (2) social media, and (3) video games.²⁴ Response options for each type of media included “never/did not use,” “under 1 hour,” “1–3 hours,” “4–6 hours,” and “more than 6 hours” per day. These categories were recoded as numeric values according to their midpoints (0, 0.5, 2, 5, and 7 hours/d) and were summed to estimate total digital media use (maximum = 18 hours/d). Physical activity was measured in Metabolic Equivalent Task minutes per week using the International Physical Activity Questionnaire – Short Form²⁵ and rescaled to mean = 0, standard deviation = 1.

Statistical analyses

First, to approximate characteristics of the resident physicians, all analyses below were adjusted using sample weights derived from census data of resident physicians in Quebec. Raking ratio estimation²⁶ was applied to calibrate weights to sex, language, age, medical school, and program of training. We examined the weighted means or prevalence of sleep parameters, affective symptoms, and substance use for the total population and as a function of social jetlag severity. Sample means were compared using analysis of variance, and sample prevalence or proportions were compared using Rao–Scott χ^2 tests.²⁷ Associations of severe social jetlag with sociodemographic, mental health, and lifestyle measures were examined using age and sex-adjusted logistic regression models. Analyses were conducted in R version 4.1.2 (R Foundation for Statistical Computing, Vienna, Austria).²⁸ Nonoverlapping 95% confidence intervals or $P < .05$ were considered statistically significant.

RESULTS

Participants

Of 3,906 resident physicians in Quebec, 564 (14.4%) participated in the study, and 561 completed the full questionnaire.

Data from 492 individuals was used in the present analyses (mean [standard deviation] age, 27.6 [3.6] years; 330 females [67.1%]). Forty-four participants [7.8%] were excluded for any missing demographics and 28 participants [5.0%] for missing sleep-wake timing. Sociodemographic characteristics of the sample are presented in **Table 1**.

Sleep duration and sleep-wake timing

The mean sleep duration was significantly shorter on workdays (7.15 hours [95% confidence interval [CI], 7.02–7.28 hours]) than on free days (8.36 hours [95% CI, 8.18–8.54 hours]; **Figure 1A**). Sleep-wake timing also differed markedly across workdays and free days. The wake time was significantly earlier on workdays (6.31 hours [95% CI, 6.24–6.38 hours]) than on free days (8.26 hours [95% CI, 8.09–8.44 hours]). Bedtime was significantly earlier on workdays (22.79 hours [95% CI, 22.66–22.92 hours]) than on free days (23.62 hours [95% CI, 23.46–23.79 hours]). Mean chronotype was 3.56 hours [95% CI, 3.42–3.69 hours], corresponding to an intermediate chronotype (**Figure 2**).¹⁹ On average, 5.24 (95% CI, 4.56–6.52) nights

were affected by work in the past month (**Figure S1** in the supplemental material).

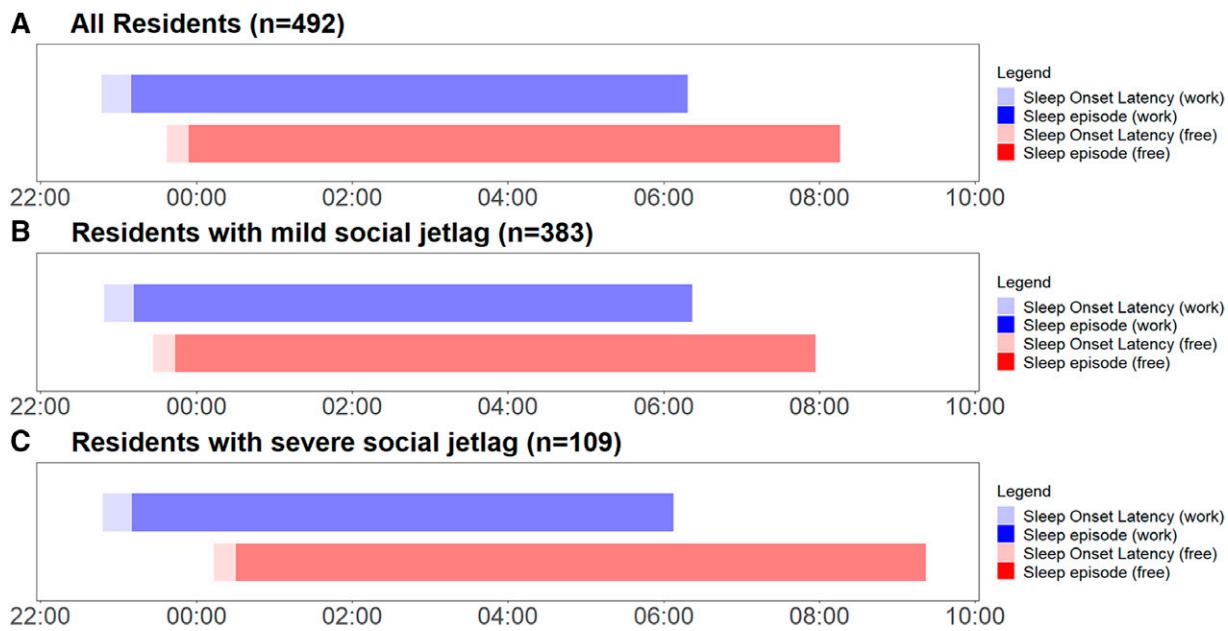
Sleep debt, social jetlag, and sleep disturbances

The mean sleep debt was 1.59 hours (95% CI, 1.37–1.81 hours), with 31.9% of residents (95% CI, 25.0–39.6%) reaching ≥ 2 hours per week (**Figure S2** in the supplemental material). Only 0.8% (95% CI, 0.3–2.2%) had negative relative sleep debt (eg, weekly sleep duration longer than sleep preceding free days). The mean social jetlag was 1.37 hours (95% CI, 1.28–1.47 hours), and 21.8% (95% CI, 16.5–28.3%) of residents had a severe social jetlag (**Figure 3**). Only 1.6% (0.6–4.1%) of residents had a midsleep later during workdays than during free days. The estimated prevalence of sleep disturbances was 51.7% (95% CI, 44.4–58.8%). Sleep-onset latency ≥ 30 minutes was more common on workdays (37.3% [29.9–45.3%]) than on free days (23.9% [18.3–30.5%]).

Subgroup and multivariable analysis

Severe social jetlag was more frequent at earlier levels of training (**Table 2**). Sleep duration was shorter during workdays in residents with severe social jetlag than in other residents (6.88 hours [6.4–7.35 hours] vs 7.18 hours [7.04–7.32 hours]; $P = .001$; **Figure 1B** and **Figure 1C**) but longer during free days (8.79 hours [8.38–9.21 hours] vs 8.23 hours [8.03–8.44 hours]; $P < .001$). Residents with severe social jetlag (**Table 3**) more commonly had a severe sleep debt (55.1% [38.0–71.1%] vs 25.3% [17.8–34.6%]) and a later chronotype (4.12 hours [3.80–4.44 hours] vs 3.38 [3.24–3.52 hours]). Depressive symptoms were also more prevalent (65.4% [54.2–75.2%] vs 46.1% [37.7–54.8%]), even after removing the sleep item of the Patient Health Questionnaire. Anxiety symptoms did not differ significantly between the groups. There was a nonsignificant trend for more cannabis and less alcohol use in the severe social jetlag group.

After age and sex adjustment, severe social jetlag was associated with younger age, surgical programs, and earlier level of training (**Table 2**). Severe social jetlag was also associated with a later chronotype, severe sleep debt, less physical activity, and presence of depressive symptoms. No significant interactions were found between the sex variable and other factors (data not shown).


DISCUSSION

This cross-sectional study found that 21.8% of resident physicians have severe social jetlag, 31.9% of resident physicians have a severe sleep debt, and 51.7% report sleep disturbances. Severe social jetlag was associated with earlier stage of training, later chronotype, being in a surgical program, decreased physical activity, and increased sleep debt. Importantly, depressive symptoms were more common in residents with a severe social jetlag, which corroborates findings in other populations.^{13,29} Although the mechanisms remain unclear, there is evidence suggesting that circadian disruption and depressive symptoms are bidirectionally associated.^{30,31} In a study of patients with delayed sleep-phase disorder, a delayed circadian phase compared to bedtime was found to be strongly associated

Table 1—Participant characteristics (n = 492).

Characteristic	n (Weighted %)
Age, years	
< 27	216 (15%)
27–29	142 (28%)
≥ 29	134 (57%)
Sex	
Female	330 (66%)
Male	162 (44%)
Racialized minority group	
No	386 (75%)
Yes	106 (25%)
Faculty	
University of Montreal	31 (31%)
Laval University	205 (21%)
University of Sherbrooke	136 (16%)
McGill University	120 (32%)
Residency program	
Family medicine	124 (25%)
Medical specialties	191 (42%)
Pediatric specialties	17 (4%)
Surgical specialties	63 (10%)
Psychiatry	57 (13%)
Other specialties	40 (6%)
Level of training	
PGY1	134 (20%)
PGY2–3	216 (39%)
PGY4–5	142 (41%)

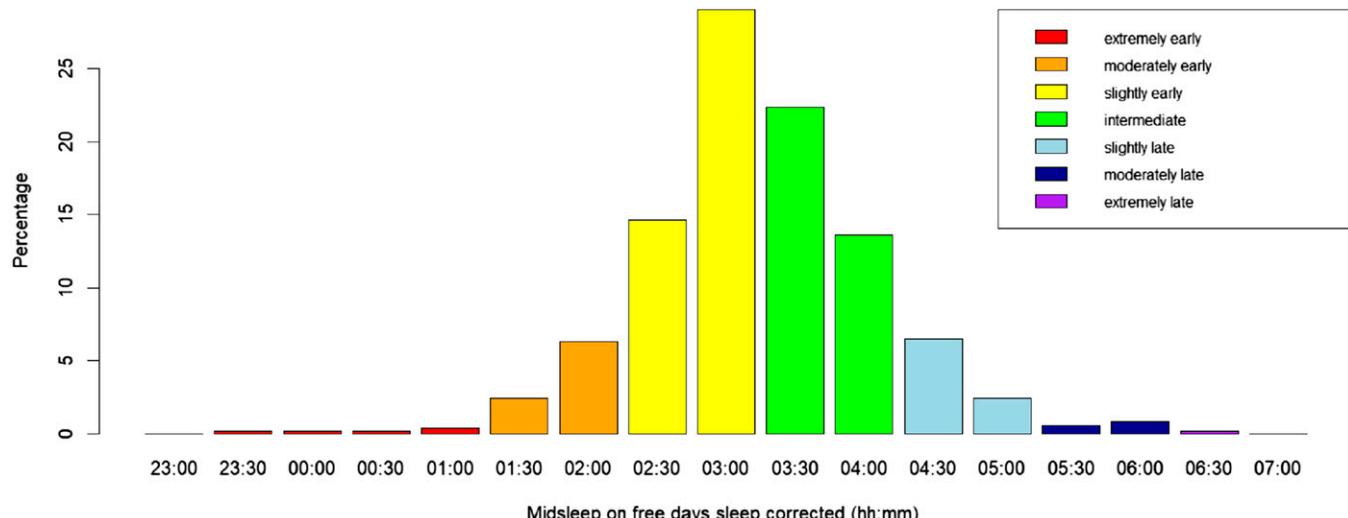
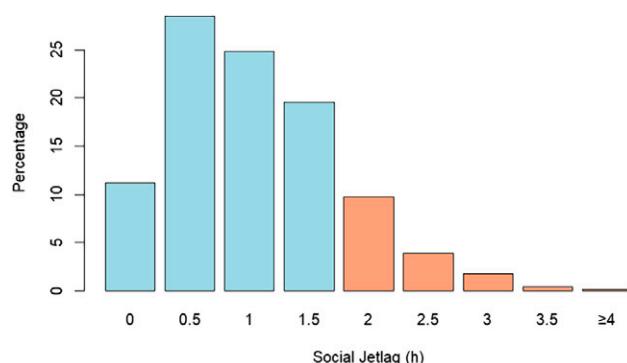

PGY = postgraduate year.

Figure 1—Average sleep episodes of resident physicians on workdays and free days.


with depressive symptoms, even after controlling for total sleep time and other potential confounding variables.³² Reduction of social jetlag and circadian misalignment, namely via psychoeducation and light therapy, are thus interesting avenues to potentially reduce depressive symptoms in resident physicians.^{33,34}

Severe social jetlag was recently estimated to affect 30.4% of US adults aged 20 to 39 years.⁷ The lower prevalence in our

sample might be explained by a tendency toward morningness in resident physicians compared with the general population.¹⁹ Yet, despite a 2-hour advancement of wake time on workdays in our sample, there was only a 50-minute advance of bedtime. This small shift in bedtime may reflect challenges associated with going to bed earlier, including a strong circadian arousal signal preceding bedtime.³⁵ Accordingly, a ≥ 30 -minute sleep onset latency was

Figure 2—Distributions of chronotype.

Color coding and population classification as reported in Roenneberg et al.¹⁹ For illustrative purposes only, as chronotype was treated as a continuous variable in the study.

Figure 3—Distributions of social jetlag (SJL).

Social jetlag was calculated as the absolute difference between midsleep time on workdays and midsleep time on free days.^{9,19}

more common on weekdays than on free days. Sleep disturbances were reported by more than half of our sample, which is yet lower than a recent Syrian study ($n = 514$) in which 79.5% of residents had poor sleep quality, as defined by the Pittsburgh Sleep Quality Index.³⁶ Working conditions might account for differences in estimated prevalence.³⁶ Nonetheless, sleep disturbances appeared more common in our sample than in the general population; US studies report that 20–30% of adults have sleep disturbances.^{7,37} Differences in measurement methods and definitions prevent definitive comparisons between populations, but our results underscore that sleep disturbances is a major challenge among resident physicians. The proportion of residents having symptoms severe enough to meet criteria for shiftwork disorder remains to be investigated. Social jetlag and shiftwork disorder both result from circadian misalignment, but shiftwork disorder's definition adds the dimension of symptoms resulting from the irregular work schedule. Shiftwork disorder is defined by insomnia or excessive

Table 2—Estimated prevalence and adjusted odds ratio of severe social jetlag in resident physicians by sociodemographic groups.

	Estimated Prevalence, n (Weighted %)	P (Difference Between Groups)	Adjusted OR (95% CI)
Age, years		.09	
< 27	52 (31.8) [21.0–42.6]		1 [Reference]
27–29	25 (14.8) [8.9–20.8]		0.37 (0.17–0.82)
≥ 29	32 (22.7) [17.8–27.6]		0.63 (0.31–1.29)
Sex		.97	
Female	62 (21.7) [16.9–26.6]		1 [Reference]
Male	47 (21.9) [16.4–27.5]		0.99 (0.5–1.95)
Racialized minority group		.24	
No	78 (20.0) [15.9–24.1]		1 [Reference]
Yes	31 (27.1) [19.3–34.9]		1.54 (0.81–2.91)
Faculty		.29	
University of Montreal	7 (16.3) [10.5–22.1]		1 [Reference]
Laval University	43 (21.8) [13.9–29.8]		1.28 (0.44–3.76)
University of Sherbrooke	24 (18.0) [9.4–26.7]		0.96 (0.28–3.26)
McGill University	35 (29.1) [22.0–36.2]		2.01 (0.66–6.09)
Residency program		.12	
Family medicine	25 (16.8) [10.2–23.3]		1 [Reference]
Medical specialties	43 (18.2) [13.0–23.5]		1.25 (0.55–2.82)
Pediatric specialties	3 (18.5) [0.2–36.8]		1.20 (0.18–7.84)
Surgical specialties	25 (45.1) [31.3–58.8]		4.30 (1.7–10.88)
Psychiatry	7 (27.0) [16.1–38.0]		1.84 (0.48–7.12)
Other specialties	6 (19.6) [5.6–33.6]		1.31 (0.4–4.31)
Level of training		.01	
PGY1	34 (37.1) [27.5–46.7]		1 [Reference]
PGY2–3	49 (21.8) [16.0–27.6]		0.47 (0.21–1.06)
PGY4–5	26 (14.5) [9.6–19.3]		0.32 (0.13–0.79)

Odds ratios (OR) are adjusted for age and sex. CI = confidence interval, PGY = postgraduate year.

Table 3—Association of chronotype, sleep characteristics, mental health, and lifestyle of residents with mild and severe social jetlag.

Variables	Mean or Weighted %		P	Adjusted OR (95% CI)
	Mild Social Jetlag	Severe Social Jetlag		Severe Social Jetlag
Chronotype	3.38 [3.24–3.52]	4.12 [3.80–4.44]	<.001	3.01 (1.76–5.15)
Nights	5.41 [4.19–6.62]	5.70 [4.26–7.15]	.24	1.02 (0.97–1.08)
Severe sleep debt	25.3% [17.8–34.6%]	55.1% [38.0–71.1%]	<.001	1.65 (1.21–2.23)
Long sleep onset latency				
Free days	22.4% [16.2–30.1%]	32.9% [20.2–48.8%]	.23	1.35 (0.83–2.19)
Workdays	36.1% [27.6–45.5%]	46.6% [30.8–63.0%]	.44	1.24 (0.74–2.06)
Depressive symptoms	46.1% [37.7–54.8%]	65.4% [54.2–75.2%]	.03	1.94 (1.04–3.62)
Sleep disturbances	50.3% [42.1–58.4%]	60.6% [48.7–71.3%]	.32	1.35 (0.71–2.54)
Other symptoms*	39.2% [31.0–48.0%]	57.5% [42.8–71.0%]	.04	2.01 (1.05–3.86)
Anxiety symptoms	54.0% [45.6–62.1%]	50.5% [33.6–67.3%]	.59	0.79 (0.39–1.61)
IPAQ	0.18 [−0.02 to 0.39]	−0.42 [−0.56 to −0.28]	.07	0.55 (0.37–0.80)
Screentime (hours/day)	3.75 [3.17–4.33]	3.71 [2.85–4.57]	.12	1.00 (0.92–1.1)
TV or streaming	1.67 [1.39–1.95]	1.60 [1.24–1.96]	.36	1.01 (0.86–1.2)
Social media	1.83 [1.44–2.22]	1.95 [1.39–2.52]	.13	1.02 (0.85–1.22)
Game	0.22 [0.13–0.32]	0.19 [0.02–0.35]	.09	0.98 (0.72–1.34)
Alcohol use	47.5% [39.5–55.7%]	34.3% [21.3–50.1%]	.06	0.53 (0.27–1.02)
Alcohol binge	14.6% [8.9–23.0%]	16.2% [6.4–35.4%]	.40	1.52 (0.63–3.7)
Cannabis use	4.1% [2.2–7.6%]	7.8% [3.5–16.6%]	.06	2.56 (0.86–7.64)

Odds ratios (OR) are adjusted for age and sex. *Score ≥ 4 on the Patient Health Questionnaire after excluding the third item (sleep disturbances) for sensitivity analyses. CI = confidence interval, IPAQ = International Physical Activity Questionnaire (mean = 0, standard deviation = 1).

daytime sleepiness associated with work schedule overlapping time for sleep.³⁸

Chronotype was a strong risk factor for severe social jetlag among residents in our study, despite some prior evidence for a fit between specialty choice and one's biological clock.³⁹ Extremely early schedules, such as in surgical programs, might challenge the biological clock beyond its entrainment capacity. We accordingly found that a surgical specialty program was a risk factor for severe social jetlag. A more advanced level of training was associated with less social jetlag, even after controlling for age. We hypothesize that this finding might reflect changes in expectations toward residents as they move toward practice (eg, junior residents onsite and senior residents taking home calls). Additional studies are warranted to further understand whether this trend continues after graduation, and how it might differentially affect clinicians in academic vs community centers.

Aligning biological and social clocks is increasingly considered in the management of obesity, diabetes, and cardiovascular disease.^{8,9,40,41} According to a cross-sectional study of Portuguese working adults, each additional hour of social jetlag increases cardiovascular risk by 31% (odds ratio = 1.31 [95% CI, 1.02–1.68]).⁴² Among health care workers specifically, social jetlag was shown to be associated with obesity.⁴³ Although metabolic measurements were not available, we found that residents with severe social jetlag reported less physical activity.^{44,45}

Alcohol and cannabis are known to disrupt sleep,^{44,45} and previous studies found increased substance use in individuals

with a later chronotype.^{8,46,47} Although earlier studies suggested social jetlag might mediate this association,⁸ later studies did not corroborate this hypothesis.^{29,46} A 3-year longitudinal study of undergraduates, indeed, found no support for social jetlag as a predictor of substance use, and rather suggested that this association pertains to shared psychological factors, including lower self-control and increased sensation-seeking.^{46,47} Accordingly, our study did not identify substance use as a major risk factor for social jetlag in residents. The effects of other substances on social jetlag in resident physicians, including prescription drugs, remain to be explored.

The estimated sleep duration on workdays was 7.15 hours in our study, which is longer than the sleep duration of 6.9 hours (± 1.0 hours; free days and workdays combined) recently reported in a sample of 4,826 US resident physicians.³ The latter study, however, did not report sleep differences across free days and workdays. The longer sleep duration in our sample may be attributed to Quebec's 16-hour work shift cap.^{3,48} Accordingly, a study of US pediatric residents with working shifts ≤ 16 hours found a mean sleep duration of 7.5 hours.⁴⁹ The sleep duration in our sample was slightly shorter than the estimated sleep duration of 7.63 hours reported among 20- to 39-year-old US adults,⁷ but the high prevalence of sleep extension on free days in our sample suggests unmet needs for sleep. We, indeed, estimated that the sleep debt among resident physician was 1.37 hours, and 31.9% accumulated at least 2 hours per week, which is much higher than the 12.8% reported among

young US adults.⁷ Sleep compensation has been documented in studies assessing pre/postcall sleep in internal medicine residents, for whom sleep episodes often lasted > 9 hours while they were recuperating.^{10,50,51} In Quebec, some regulations might facilitate sleep compensation, including calls of a 16-hour duration, an 8-hour sleep period protected following calls, and a maximum of 5-night call periods in a row.⁵¹ Regular workdays are limited to 12 hours daily from Monday to Friday. Moonlighting is also uncommon in Quebec, given strict regulations.⁵² A growing body of evidence suggests that sleep debt is associated with obesity, diabetes, and poorer cardiovascular health,^{31,53–56} and it is unclear whether sleep compensation attenuates those risks.⁵⁷ There is a need for prospective studies in physicians to assess the efficacy of sleep compensation for mitigating negative outcomes associated with chronic sleep debt.

Limitations

This study is novel in its detailed assessment of sleep patterns in a large, well-characterized sample of residents. However, information on sleep data was self-reported rather than objectively measured and is therefore subject to a recall bias. Data on sleep disturbances were derived from a single item on the Patient Health Questionnaire rather than more extensive scales, such as the Pittsburgh Sleep Quality Index. The extent of impact of nighttime work is unknown and participants were not assessed for shiftwork disorder or other sleep or medical disorders. Although it is uncommon in Quebec, data on moonlighting were not collected. The response rate was low, and limited representation of racialized minority groups constrained subgroup analyses. Data on other provinces were not available.

CONCLUSIONS

In this cross-sectional study, resident physicians of Quebec showed variability in sleep habits across workdays and free days, with longer sleep duration and later sleep–wake phase on free days. A high percentage of residents experienced long-term sleep deprivation, severe social jetlag, and frequent sleep disturbances. Severe social jetlag was associated with higher levels of depression. These findings underscore the prevalence of sleep disruptions in resident physicians and the potential need for environmental and chronotherapeutic approaches to optimize sleep health in this population.

ABBREVIATIONS

CI, confidence interval
PGY, postgraduate year

REFERENCES

- West CP, Tan AD, Habermann TM, Sloan JA, Shanafelt TD. Association of resident fatigue and distress with perceived medical errors. *JAMA*. 2009;302(12):1294–1300.
- Barger LK, Ayas NT, Cade BE, et al. Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. *PLoS Med*. 2006;3(12):e487.
- Barger LK, Weaver MD, Sullivan JP, Qadri S, Landrigan CP, Czeisler CA. Impact of work schedules of senior resident physicians on patient and resident physician safety: nationwide, prospective cohort study. *BMJ Med*. 2023;2(1):e000320.
- Barger LK, Cade BE, Ayas NT, et al. Extended work shifts and the risk of motor vehicle crashes among interns. *N Engl J Med*. 2005;352(2):125–134.
- Mansukhani MP, Kolla BP, Surani S, Varon J, Ramar K. Sleep deprivation in resident physicians, work hour limitations, and related outcomes: a systematic review of the literature. *Postgrad Med*. 2012;124(4):241–249.
- Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. *J Sleep Res*. 2016;25(2):131–143.
- Di H, Guo Y, Dagħiġi L, et al. Evaluation of sleep habits and disturbances among US adults, 2017–2020. *JAMA Netw Open*. 2022;5(11):e2240788.
- Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. *Chronobiol Int*. 2006;23(1–2):497–509.
- Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. *Curr Biol*. 2012;22(10):939–943.
- Basner M, Dinges DF, Shea JA, et al. Sleep and alertness in medical interns and residents: an observational study on the role of extended shifts. *Sleep*. 2017;40(4):zsx027.
- Merikanto I, Lahti T, Puusniekka R, Partonen T. Late bedtimes weaken school performance and predispose adolescents to health hazards. *Sleep Med*. 2013;14(11):1105–1111.
- Danielsson K, Sakarya A, Jansson-Fröhmark M. The reduced morningness–eveningness questionnaire: psychometric properties and related factors in a young Swedish population. *Chronobiol Int*. 2019;36(4):530–540.
- Qu Y, Li T, Xie Y, et al. Association of chronotype, social jetlag, sleep duration and depressive symptoms in Chinese college students. *J Affect Disord*. 2023;320:735–741.
- Roenneberg T, Kuehnle T, Pramstaller PP, et al. A marker for the end of adolescence. *Curr Biol*. 2004;14(24):R1038–R1039.
- Hena M, Garmy P. Social jetlag and its association with screen time and nighttime texting among adolescents in Sweden: a cross-sectional study. *Front Neurosci*. 2020;14:122.
- Alves MS, Andrade RZ, Silva GC, et al. Social jetlag among night workers is negatively associated with the frequency of moderate or vigorous physical activity and with energy expenditure related to physical activity. *J Biol Rhythms*. 2017;32(1):83–93.
- Eysenbach G. Improving the quality of web surveys: the checklist for reporting results of internet E-Surveys (CHERRIES). *J Med Internet Res*. 2004;6(3):e34.
- Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. *J Biol Rhythms*. 2003;18(1):80–90.
- Roenneberg T, Pilz LK, Zerbini G, Winnebeck EC. Chronotype and social jetlag: a (self-) critical review. *Biology (Basel)*. 2019;8(3):54.
- Cabeza de Baca T, Chayama KL, Redline S, et al. Sleep debt: the impact of weekday sleep deprivation on cardiovascular health in older women. *Sleep*. 2019;42(10):zs149.
- Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. *J Gen Intern Med*. 2001;16(9):606–613.
- Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. *Arch Intern Med*. 2006;166(10):1092–1097.
- Landry M, Tremblay J, Guyon L, Bergeron J, Brunelle N. La grille de dépistage de la consommation problématique d'alcool et de drogues chez les adolescents et les adolescentes (DEP-ADO): développement et qualités psychométriques. *Drogues, santé et société*. 2005;3(1):20–37.
- Nikolaidis A, Pakarian D, Alexander L, et al. The coronavirus health and impact survey (CRISIS) reveals reproducible correlates of pandemic-related mood states across the Atlantic. *Sci Rep*. 2021;11(1):8139.
- Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. *Med Sci Sports Exerc*. 2003;35(8):1381–1395.
- Kalton G, Flores-Cervantes I. Weighting methods. *J Official Statistics*. 2003;19(2):81.
- Li Y, Graubard BI. Testing Hardy–Weinberg equilibrium and homogeneity of Hardy–Weinberg disequilibrium using complex survey data. *Biometrics*. 2009;65(4):1096–1104.

28. R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna: R Foundation for Statistical Computing; 2020.

29. Islam Z, Hu H, Akter S, et al. Social jetlag is associated with an increased likelihood of having depressive symptoms among the Japanese working population: the Furukawa nutrition and health study. *Sleep*. 2020;43(1):zsz204.

30. Boivin DB. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. *J Psychiatry Neurosci*. 2000;25(5):446–458.

31. Okajima I, Komada Y, Ito W, Inoue Y. Sleep debt and social jetlag associated with sleepiness, mood, and work performance among workers in Japan. *Int J Environ Res Public Health*. 2021;18(6):2908.

32. Murray JM, Sletten TL, Magee M, et al. Prevalence of circadian misalignment and its association with depressive symptoms in delayed sleep phase disorder. *Sleep*. 2017;40(1):zsw002.

33. Perera S, Eisen R, Bhatt M, et al. Light therapy for non-seasonal depression: systematic review and meta-analysis. *BJPsych Open*. 2016;2(2):116–126.

34. Zerbini G, Kantermann T, Merrow M. Strategies to decrease social jetlag: reducing evening blue light advances sleep and melatonin. *Eur J Neurosci*. 2020;51(12): 2355–2366.

35. Lavie P. Ultrashort sleep-waking schedule. III. 'Gates' and 'forbidden zones' for sleep. *Electroencephalogr Clin Neurophysiol*. 1986;63(5):414–425.

36. Jassem M, Abdelwahed RNK, Alyousbashi A, Meer A. Evaluation of daytime sleepiness and sleep quality among resident physicians of Damascus: a cross-sectional study. *Sleep Epidemiology*. 2022;2:100035.

37. Ford ES, Cunningham TJ, Giles WH, Croft JB. Trends in insomnia and excessive daytime sleepiness among U.S. adults from 2002 to 2012. *Sleep Med*. 2015;16(3): 372–378.

38. American Academy of Sleep Medicine. *International Classification of Sleep Disorders*. 3rd ed, text revision. Darien, IL: American Academy of Sleep Medicine; 2023.

39. Chin-Quee AL, Yaremchuk K. Medical residents' circadian preferences across specialties. *Laryngoscope*. 2017;127(10):2236–2238.

40. Vetter C, Devore EE, Ramin CA, Speizer FE, Willett WC, Schernhammer ES. Mismatch of sleep and work timing and risk of type 2 diabetes. *Diabetes Care*. 2015;38(9):1707–1713.

41. Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. *Proc Natl Acad Sci U S A*. 2016; 113(10):E1402–E1411.

42. Gamboa Madeira S, Reis C, Paiva T, Moreira CS, Nogueira P, Roenneberg T. Social jetlag, a novel predictor for high cardiovascular risk in blue-collar workers following permanent atypical work schedules. *J Sleep Res*. 2021;30(6):e13380.

43. Brum MCB, Dantas Filho FF, Schnorr CC, Bertoletti OA, Bottega GB, da Costa Rodrigues T. Night shift work, short sleep and obesity. *Diabetol Metab Syndr*. 2020;12:13.

44. Helaakoski V, Kaprio J, Hulbin C, Ollila HM, Latvala A. Alcohol use and poor sleep quality: a longitudinal twin study across 36 years. *Sleep Adv*. 2022;3(1): zpac023.

45. Amaral C, Carvalho C, Scaranello A, Chapman K, Chatkin J, Ferreira I. Cannabis and sleep disorders: not ready for prime time? A qualitative scoping review. *J Clin Sleep Med*. 2023;19(5):975–990.

46. Tavernier R, Munroe M, Willoughby T. Perceived morningness-eveningness predicts academic adjustment and substance use across university, but social jetlag is not to blame. *Chronobiol Int*. 2015;32(9):1233–1245.

47. Haynie DL, Lewin D, Luk JW, et al. Beyond sleep duration: bidirectional associations among chronotype, social jetlag, and drinking behaviors in a longitudinal sample of US high school students. *Sleep*. 2018;41(2):zsx202.

48. Pattani R, Wu PE, Dhalla IA. Resident duty hours in Canada: past, present and future. *CMAJ*. 2014;186(10):761–765.

49. Barger LK, Sullivan JP, Blackwell T, et al. Effects on resident work hours, sleep duration, and work experience in a randomized order safety trial evaluating resident-physician schedules (ROSTERS). *Sleep*. 2019;42(8):zsz110.

50. Desai SV, Feldman L, Brown L, et al. Effect of the 2011 vs 2003 duty hour regulation-compliant models on sleep duration, trainee education, and continuity of patient care among internal medicine house staff: a randomized trial. *JAMA Intern Med*. 2013;173(8):649–655.

51. Basner M, Asch DA, Shea JA, et al. Sleep and alertness in a Duty-Hour flexibility trial in internal medicine. *N Engl J Med*. 2019;380(10):915–923.

52. Fédération des Médecins Résidentes du Québec. Call schedule and duty. <https://fmrq.qc.ca/en/collective-agreement/on-call-schedule/call-schedule-and-duty/>. Accessed March 5, 2024.

53. Chaput J-P, Tremblay A. Adequate sleep to improve the treatment of obesity. *CMAJ*. 2012;184(18):1975–1976.

54. Daghlas I, Dashti HS, Lane J, et al. Sleep duration and myocardial infarction. *J Am Coll Cardiol*. 2019;74(10):1304–1314.

55. Bayon V, Leger D, Gomez-Merino D, Vecchierini MF, Chennaoui M. Sleep debt and obesity. *Ann Med*. 2014;46(5):264–272.

56. van Dijk D, Balkau B, Segrestin B, et al. Associations between sleep duration and sleep debt with insulin sensitivity and insulin secretion in the EGIR-RISC study. *Diabetes Metab*. 2019;45(4):375–381.

57. Depner CM, Melanson EL, Eckel RH, et al. Ad libitum weekend recovery sleep fails to prevent metabolic dysregulation during a repeating pattern of insufficient sleep and weekend recovery sleep. *Curr Biol*. 2019;29(6):957–967.e4.

ACKNOWLEDGMENTS

The authors thank resident physicians for taking time from their busy work schedules to participate in this study.

SUBMISSION & CORRESPONDENCE INFORMATION

Submitted for publication December 2, 2023

Submitted in final revised form July 8, 2024

Accepted for publication July 12, 2024

Address correspondence to: Christophe Moderie, MD, MSc, Department of Psychiatry, McGill University, 1033 Pine Ave. W., Montréal, QC, Canada, H3A 1A1; Tel: 514 398 2958; Fax: 514 398 4370; Email: christophe.moderie@mail.mcgill.ca

DISCLOSURE STATEMENT

All authors have seen and approved the manuscript. This study was supported by research funding from the Fédération des médecins résidentes du Québec (FMRQ) awarded to V.P., F.L.P., and M.-C.G. The FMRQ, which is the professional union for resident physicians in the province of Québec, Canada, had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors report no conflicts of interest.